

Algebraic Proofs

Created by:

www.pinpointlearning.co.uk

The Personalised GCSE Revision Site

1) Algebraic Proofs: Easier

1) Prove that $\frac{1}{2}(n+1)(n+2) - \frac{1}{2}n(n+1) = n+1$

(2 Marks)

2) Prove that $(2n+1)^2 - (2n-1)^2$ is a multiple of 8 for all positive integer values of n.

(2 Marks)

3) Prove that $(2n + 1)^2 - (2n - 1)^2 - 10$ is a not multiple of 8 for all positive integer values of n.

(2 Marks)

1) Algebraic Proofs: Medium

4)	Prove algebraically that the sum of the squares of any two consecutive even numbers s always a multiple of 4.	
		(2 Marks)
5)	Prove algebraically that the difference between the squares of any tweeven numbers is always a multiple of 4.	vo consecutive
		(2 Marks)
6)	Prove algebraically that the difference between the squares of any two numbers is always an odd number.	vo consecutive

1) Algebraic Proofs: Harder

7)	Prove algebraically that the sum of the squares of any two consecutive odd numbers cannot be a multiple of 4.	
	(2 Marks)	

8) Prove algebraically that the sum of the squares of any three consecutive odd numbers always leaves a remainder of 11 when divided by 12.

(2 Marks)